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Differential calculus on the quantum superplane 
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Physics Department, SGTB Khalsa College, University of Delhi, Delhi-110007, India 

Received 5 September 1990 

Abstract. Very recently Werr and Zumino succeeded i n  formulating a perfectly consistent 
differential C~ICUIUS on the quantum hyperplane. We give the natural extension of their 
scheme 10 superspace and discuss the various consistency checks that have been performed. 

It is well known, through the work of Woronowicz [l], that quantum groups provide 
a concrete example of non-commutative differential geometry. In a further development 
Wess and Zumino [2] have given a simpler example of non-commutative differential 
geometry. They have shown that one can define a consistent differential calculus on 
the non-commutative space of the quantum hyperplane. In this paper we consider the 
extension to superspace of the explicit commutation relations given by Wess and 
Zumino (see section 4 in [2]). We have checked that the calculus thus developed 
cannot lead to inconsistencies. 

The quantum plane is defined, according to Manin [3], in terms of n coordinates 
x', i = 1 , 2 , .  , , , n, which satisfy the commutation relations 

x'xJ-qx'x'=O i < j  (1) 

where 9 is a complex number (Manin uses 1/9 where we use 9, following the usage 
of Wess and Zumino). To establish a differential calculus on the quantum (hyper-)plane, 
Wess and Zumino introduce the differentials of the basic coordinates 

X ' = d x '  (2) 

as additional variables which satisfy ( i  < j )  

X ' X J =  - ( l /q)X'X'  (3) 

and also 

X ' X ' = O  for all i, 

They deduce the 'intermediary' commutation relations between x's and X's, and also 
the remaining commutation relations between the now non-commuting derivatives of 
the quantum plane with the x's, the X ' s  and finally themselves. I n  deriving these 
explicit relations they are guided by the requirements of consistency and of covariance 
under the action of the quantum group G L , ( n ) .  It is known, through the work of 
Manin and 'collaborators, that the relations (1) and (3) are preserved under the action 
of a GL,(n) matrix whose elements commute with x's and X ' s  and, vice versa, that 
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this requirement defines a quantum matrix. Wess and Zumino showed that their entire 
calculus is 'invariant' under the action of this quantum group, in the same sense as 
( I )  and ( 3 )  are. 

In this work we give explicitly the commutation relations of the differential calculus 
on the quantum plane with variables XI, i = 1 , 2 , .  . . , n, e", a = I ,  2 , .  , . , m, which 
satisfy, in addition to the well known relations ( I ) ,  the following 

x'0" - q0"x' = 0 (4) 

0 " 0 @  + 9 ~ ~ 0 "  = 0 a<p .  ( 5 )  

and 

We also have 0"0" = 0 for each a. Note that for q = 1, x's commute and 0's anti- 
commute with themselves while x's commute with 0's. We also introduce variables @" 
which must satisfy 

X ' W = ( l / q ) @ " X '  (6) 

and 

@"OD = ( l / q )@%".  (7) 

We shall call the plane, defined in terms of the variables satisfying ( l ) ,  (3)-(7), the 
quantum superplane. For q = 1, 0's become Grassmannian in character and commute 
among themselves. It is natural to ask whether we can interpret 0's as the differentials 
of 0's 

Q" =do" (8) 

in the same manner as X's can b e  interpreted as differentials of x's. 
To develop the differential calculus it is first necessary to give the (anti-)commutation 

relations between the basic variables and their differentials. We are guided by the 
following observation: if one differentiates the left-hand sides of the basic relations 
(1). (4) and (S), then one must require that the result vanish as a consequence of the 
relations in the calculus. A valid set of relations which respects this 'linear consistency 
condition' is ( i  < j )  

X'X' = 9X'X' (9) 

x ' X ' = q X ' x ' + ( q 2 - 1 ) X ' x '  (10) 

and 

0 - x '  = - 9 x ' 0 w  ( 1 3 )  

x'Q" = q@"x'+(92-  l)X'0". (14) 

The relations (9 ) ,  ( 1 1 )  and ( 1 3 )  are chosen for compatibility with (31, ( 6 )  and (7). 
(There is a different choice which also implies ( 3 ) ,  (6) and (7) ;  for this paper we stick 
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to the above choice.) To the above we add 

x 'x '  = qzx'x' 
and 

Om@" =Q"o", (16) 

Equation (15) is required for the relations (9), ( IO)  and (15) to he invariant under the 
action ofthe quantum group GL,( n ) ;  as explained by Arne Schirrmacherthese relations 
can be expressed in a simple form (in terms of the R matrix of GL,(n)) which is 
covariant under the action of this quantum group. As a further check on our previous 
relations, let us note that the basic relations ( I ) ,  (4) and ( 5 )  are also valid when acted 
on by the differentials. It is straightforward, though tedious, to verify that their left-hand 
sides operating on X ' s  and 0 ' s  lead to a null result. Hence our relations so far are 
also compatible with (he 'quadratic consistency condition' just explained. 

The exterior differential (summation over repeated indices) 

d = X ' J ,  +WJ,  (17) 

has the usual properties such as 
dx'-x 'd= X' 

do" + @"d = 0" ( 1 9 )  

and d2 = 0. We have denoted the derivatives 

ai = a / a x '  J,* = J /JB" .  

From (9)-( 1 9 )  we arrive at the relations between variables and derivatives 
m 

J,x' = 1 + q 2 X i d ; + ( q 2 - 1 )  1 X J J , + ( q * -  1) 1 f?"d, 
it, I 

d i x i =  q x J J i  i < j  

J j x '  = qx 'J ,  

J , x ' =  q x ' J ,  

J;B" = qB"d; 

d,B" = 1 - B"J,  - ( 1  - q 2 )  1 B P J p  
"7 

< , + I  

J,Bp = - q e p J e  a < P  
J,B" = - q 8 " J p .  

From ( 2 1 )  we have the (anti-) commutation relations between the derivatives ( i < j ,  
a < P )  

d,J, = ( l / q ) J , J ,  

J,J, ,  = ( l / q ) J , J ,  (22) 

J,dp = - ( V q ) J p J ' , .  

We also have d,d, = 0. To complete the scheme we give the relations between derivatives 
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and differentials ( i  < j ,  a < p )  

If we multiply the left-hand side by x ' / Q y  from the right, we can commute x'/O' 
through to the left using (21) and the inverse of relations (9)-(16). In this way one 
finds terms which are linear in X and 0 which must cancel separately. This immediately 
fixes the coefficients of the exchange terms on the left-hand side of (23). The non- 
vanishing right-hand-side terms are easy to figure out because the exterior derivative 
d is expected to satisfy 

d X ' + X ' d  = 0 (24) 

d@"-O"d=O. (25) 

Note that the somewhat unexpected relations 

da, = q2a,d 

da, = -q'a,d 

obtained as a consequence of (22) and (23) are, however, quite consistent with the 
basic requirement for the exterior derivative, i.e. d2  = 0. For instance 

d 2 =  d(X'd,  +@"a,.) = (-X'dJ,  +O"da,) 

(28) 

Hence d' must vanish. To sum up, we have generalized the scheme of Wess-Zumino 
by establishing a calculus which satisfies the general constraints for a non-commutative 
differential calculus (the so-called linear and quadratic conditions) together with 
various other consistency checks one might think of. 

Finally, as a non-trivial illustration, we consider the (2+2)-dimensional case ( n  = 
m = 2). We denote the basic variables x,  y ,  8 and 4, the differentials 

= 9 2 (-X'a, -@"a,)d= -q2d2. 

d x = X  d y =  Y d o = @  d + = @  (29) 

and the derivatives 

a / a x  = a,  a j a y = a ,  a / ae=a ,  a l a$  =a,. (30) 

The explicit commutation relations of the differential calculus on the (2+2)-  
dimensional quantum superplane are obtained readily from the formulae given above. 
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Let us write the relations between the variables 

xy = qyx 

x0 = q8x (idem y )  

x& = q+x (idem y )  

04 = -q+e 

0 2 =  +*= 0. 

To save space we shall not give the remaining relations. Suffice to  say that the relations 
between x, y, X ,  Y, J,, d,, agree with those given by Wess and Zumino (equations 
(4.6)-(4.12) in [2]) if we let 0 = 4 = 0 = @ = 0 in our scheme. Using the basic commuta- 
tion relations (31) one can order in some standard way an arbitrary monomial ( a  
product of the basic variables elevated to arbitrary powers). For instance one can order 
monomials so that y appears before x, + is before 0, and x is before +. One can then 
compute the derivatives of an ordered monomial, using the relations between variables 
and derivatives. One finds: 

d, (y"x" )  = ( q y ) " - ' x " [ n ]  
dy[y"x"@ = ( q v ) " - l  ""r a I n X  = Y~ j" ( q x )  m - 1  m 

d,.(y"x"+) = ( q y ) " - ' x " d ~ [ n l  

Jo(y"x"8)  = (SV)" - ' (qx)"  

J, (Y"x'")  = ( q y ) " ( y x ) " ~ ' [ m I  

x a l n j  

W " x " 6 )  = ( q y ) " ( q x ) " - ' [ m I  

J,(y"x"+O) = (qy)"- 'xmq58[n]  J , ( Y ~ X " + @ )  = ( q y ) " ( q x ) " - ' [ m ]  

d d Y " X " 4 )  = (qy)" (qx) '"  

J e b " x " 4 8 )  = ( W ) " ( q X ) " ( - q + )  

where we have used the standard notation 

J,(y"x"'@) = ( ~ ) " ( q x ) ' " 8  

By linearity, these formulae yield the corresponding quantum derivatives of ordered 
formal power series. Alternatively one could take this as the definition of the derivatives 
and show that the relations in the calculus follow. I n  this way one is left with no doubt 
about the intemal consistency of the scheme developed above. 

In this paper we have primarily considered the real quantum superplane: 

= x' 

8" = 0". 
(34) - 

We may choose the differentials X' and 0" to be real and imaginary respectively 
- 
X ' = X '  
- (35) 
Q" = -0" 

in which case d is imaginary. Since - _  
X ' X J  = X J X '  = X J X '  - _  
x'o" = 0"x' = 8 " ~ '  (36) - _  
8"8@ = flP0" = ,go@" 
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we must have that 

4 = q-'.  (37)  
One can then check that the entire scheme goes to itself under complex conjugation, 
provided one also takes 

J i  i =  I ,  2,. . . , n (38) ;. = -q21n-i-m+ll  

The complex conjugation thus defined is an involution since its square is the identity. 
I t  is evident that 

J i  (40) 
q"-i-"+'J,  = - q n + l - " - i  

are imaginary and 
~ 

qm-"'Jm = +q"-"'J, 

are real. Returning to the (2+2)-dimensional case we note that J, and q-'Jv are purely 
imaginary, while q-'J, and J, are real. If we define 

the quantities x, y ,  0, 4, px, p3., ps and pm are real and provide a one-parameter 
deformation of the quantum mechanical phase space for a system with 2 Bose and 2 
Fermi degrees of freedom (equivalent to a two-parameter deformation of the classical 
phase space). 
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